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extinction length. It means that for a given crystal size, 
the scattering curve in the case of normal polarization 
of the incident radiation is shifted towards a larger 
angle than in the case of parallel polarization. The 
scattering curve shift for both modes of polarization is 
equal only for r ,~ 1. 

We would like to thank the referee for his helpful 
comments for improvements to the paper. 
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Abstract 

The problem of crystal-structure analysis can be given 
a form which exhibits dual quasi-symmetry. The orthog- 
onality of the Fourier waves and the non-interpene- 
tration of the atoms play a complementary role; this 
holds not only formally but also with respect to the 
separation of the coordinates of the atoms and the 
phases of the structure factors. The remarkable fact 
that the Patterson function is described by a con- 
volution in direct space, while Sayre's equation is a 
convolution in reciprocal space may be understood as a 
part of the symmetry. 

Introduction 

The kinds of experiments and theoretical procedures 
which are used for crystal-structure analysis are 
numerous. 

In most cases of structure analysis, the experimental 
investigations of the crystal to be analysed are 
restricted to: 

the quantitative chemical analysis, 
the determination of the density, 
the measurement of the Bragg angles of a number of 

reflexions, sufficient for the calculation of the lattice 
parameters, 

0567-7394/80/010027-06501.00 

the measurement of the integral intensities of the 
reflexions with scattering vectors of length less than the 
reciprocal of the desired resolution of the scattering 
density function of the crystal. 

From the results of these experiments the following 
properties of the crystal structure, unknown as a whole, 
can be deduced by routine application of the laws of 
physics (see textbooks of crystal-structure analysis): 

the lattice constants a 1, a2, a 3 and the volume V of 
the unit cell, 

the number p of the chemical elements contained in 
the specimen and the numbers q(ct),/~ = 1, 2 . . . .  , p, of 
the atoms of different kinds in its elementary cell, 

the moduli II/2(m) of the structure factors of the 
scattering density function p(x) of the crystal on a 
relative scale for all lattice points m with Im1-1 less 
than the desired resolution, 

the form factors /3,(m) and hence the scattering 
density function p , (x) , / t  = 1, 2 . . . .  , p, of the atoms of 
the structure. 

The system of information just described is 
necessary and sufficient for the application of the 
routine methods of crystal-structure analysis, now in 
common use, e.g. M U L T A N  (Germain, Main & 
Woolfson, 1971). Besides its practical importance, it is 
also of special theoretical interest because the problem 
of crystal-structure analysis, based on this class of 
information, can be formulated in a dual quasi- 
symmetric way. 
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We have denoted the form factor of p.(x) by/~.(m) 
and, in order to get a concise notation, we will in 
general use the symbols ~ or J -~ ,  for the Fourier trans- 
form of any function ~, in the forthcoming part of the 
paper: 

J - ~ ( h )  = ~t(h) = f ~,(x) exp(2n'/h.x) dVx. (1) 

Let us choose any elementary cell in the crystal and 
define a function X(x) equal to 1 if x is inside this cell, 
and equal to 0 if x lies outside. Then the Fourier trans- 
form/30(m) of 

Po=XP (2) 

at the reciprocal-lattice point m represents the structure 
factors of the crystal (Bricogne, 1974) and we have 

b0(m) = am I'/2(m), (3) 

where o m is a scale factor in most cases independent of 
m: 

am = s. (A 1) 

The diffraction experiments are in general performed 
at room temperature, which means that the atoms of 
the crystal are subject to thermal motion. The form 
factor/ ; . (m) of the/~th kind of atom must therefore be 
corrected by a temperature factor ~..(m) to give the 
effective form factor of the vth atom of the pth kind in 
the elementary cell: 

b,.,(m) = ?.,,(m) p.  (m). (4) 

The temperature factor r.~(m) can be described to a 
good approximation by 

~,,~(m) = exp ( - m .  B.~ m), (5) 

where B,,~ is a positive-definite symmetrical tensor 
(Cochran, 1954; Rollett & Davies, 1955; Waser, 
1955). 

Denoting by L,~ * P. the convolution of r,,~ and p.,  

r,.~. p.(x) = f z.~(y) p . (x - -  y) dVy, (6) 

the inverse Fourier transform of (4) can be written: 

p.~(x) = r.~, p.(x), (7) 

and from (5) we deduce 

--I  ruv(X ) = 793/2 1 Buy 1-1/2 exp (--n 2 x. B.~ x). (A2) 

We may describe the direct lattice with the help of 
Dirac's a-function by 

~(x)= Y a ( x - - m  la  1 - m  2a 2 - m  3a3), (8) 
rnl, m2,m3 

taking the summation over all integers m I, m2, m 3. We 
then have 

P = Po * {" (9) 

The scattering density function of the crystal can 
now be written in two different ways: first as a Fourier 
series with unknown phases q~m 

p(x)=  1 / V ~ ,  amI ' /E (m)exp  l2ni(q~m - m.x)] (A3) 
ill 

and secondly as a superposition of the scattering 
density function of the atoms with unknown positions 
X/av 

P q(u) 

p(x )=  Y Y r . . . p . . ~ ( x - - x . ~ ) .  (A4) 
~ = I  1.'=1 

Equations (,43) and (,44) must be valid for any value 
of x. Hence they represent together with (A 1) and (,42) 
a three-dimensional continuous system of determining 
equations for the unknown parameters - the coordin- 
ates x,~ and temperature tensors B,~ of the atoms and 
the phases q~m and the scale factor s of the Fourier 
coefficients -- which determine the scattering density 
function p of the structure. All other quantities 
appearing in the equations of type (A) can be derived 
from the experiments mentioned at the beginning of the 
paper. 

It is important to add to these equations a further 
restriction (Sayre, 1952; Woolfson, 1958a, b; 
Rothbauer, 1975). To a good approximation the atoms 
in a crystal structure do not inter-penetrate, therefore 

[r .~ ,  p. * ~ ( x -  x.~)l. [fjk * bj * ~ ( x -  Xjk)] 
= a.,,,jklZ.~ * p.  * ~(X -- X.~)I 2 (A5) 

is valid, where 

(~uv, j k =  l if (t.tv)= ( jk)  

= 0 if (pv) :~ ( jk)  

and { is the complex conjugate of r etc. It is clear that 
with the assumption (A2) for the temperature factors, 
the condition (A 5) cannot exactly be fulfilled. 

No procedure is known up to now, by which all the 
solutions of the system of equations (A 1) to (A5) for a 
given set of experimental derived quantities: P/2(m), 
p, (x), p and q(/~), can be found in any case in the range 
of natural errors. 

The problem of crystal-structure analysis as 
described in the equations (A), which we will call the 
'normal problem', appears to be without inner sym- 
metries. The non-interpenetration condition (A5), 
especially, seems to be of a somewhat accidental 
character without any obvious relation to the other 
equations. This is actually not the case. It was shown 
by Main (1974) that the non-interpenetration of the 
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atoms may be regarded as an orthogonality relation 
and, in fact, it turns out that (A5) plays a kind of 
complementary role to the orthogonality of the Fourier 
waves. 

Symmetrical formulation of the problem 

We introduce the functions 

(re(x) = exp (2ztiG~), 

F]jk(X ) = t~(X- Xjk), 
am(x) = I~/2(m) e x p ( - 2 n i m . x ) / V ,  

~j(x) = p j ,  ~(x), 

and get from (A3) and (A4) 

(Bla)  

(Bib) 

(B2a) 

(B2b) 

p :  ZO: m. O'm. ffm, (B3a)  
m 

P = Y flj • Dk * r/jk, (B3b) 
jk 

respectively. From (B2a) we deduce the integral 
orthogonality relation 

(Z.am.am.~m) * ( Ian .an .~n)  = ~m, nlamamlamlam V, 
(B4a) 

where the inversion operator I is defined by Iq/(x) = 
~(-x) ,  for any function ~t. From (A5) we have the 
corresponding local orthogonality 

( f l j  , r j ,  , r l j k ) . ( f l  u , zu, , , rl~,~ ) = (~jk.~,~lfljk , Zj ,  I 2 , rij , .  

(B4b) 
As (B4a) is not only valid at the origin of the direct 
lattice, it represents in fact a generalized orthogonality 
of the Fourier waves. In order to complete the series 
(B1) to (B4) we add the approximations (A 1) and (A2) 
for the scale and temperature factors 

a m = s, (B5a)  

rjk(x) _. ~3/2 i Bykl-l/2 exp (__~2 X. Bj-~ x). (B5b) 

The 'normal problem' consists of a wave (B3a) and a 
particle (B3b) representation of the scattering density 
function of the crystal. For the waves there exists an 
integral (B4a) and for the particles a local (B4b) 
orthogonality relation. Known from experiments are 
the waves am and the particles flj. Unknown are their 
positions, described by the shift functions ~m and r/jk - 
or the ~0m and Xjk, respectively - and the scale and 
temperature factors am and ry,, described by s and the 
tensors B j,. The orientation of the waves is given; the 
orientation of the particles is irrelevant, because they 
are assumed to be spherically symmetric. 

If one takes the Fourier transform of the system (B), 
the equations of type (a) and (b) interchange their 
character to a certain extent because the multiplications 
become convolutions and v ice  v e r s a .  Since for any ~, 

(,7~,) = tT~, ,  

in particular, the integral orthogonality of the waves 
(B4a) becomes a local orthogonality of type (B4b) and 
the local orthogonality of the atoms (B4b) becomes an 
integral orthogonality of type (B4a). However, the 
symmetry is not perfect: e.g.  on the right hand side of 
(B4b) appears the shift function r/t k while the shift 
function ffm does not appear on the right hand side of 
(B4a). This is one of the reasons why the derivation of 
the structure factor equations and the Patterson (1934) 
function run along different lines. 

The unknown quantities of the normal problem may 
be divided into three parts: (xjk, Bj,), (era,s) and p. It is 
plain that if one of these has been derived the rest of the 
solution may easily be found. 

By equating (A3) and (A4) or (B3a) and (B3b), 
respectively, p can immediately be eliminated from the 
determinental equations. We will now proceed to 
separate the following three classes of parameters: 
(xj,, Byk,S) ,  ((Pm,S, Byk) and (B/k,s) from the normal 
problem. It is convenient to start with a short 
discussion of the locally defined mappings of density 
functions, which form an important tool for this 
purpose. 

Local mappings of density functions 

The directional derivative of the scattering density 
function 

~(x) = f ~,(m) exp (-2zdm. x) dVm 

along an arbitrary vector v is 

d~,(x)/dv = f ( -2zdm. v)~(m) exp (-2zdm. x) d I'm. 

If D is a differential operator representing a linear 
combination of directional derivatives of different order 
along different directions v~, v 2, v3,..., we have 

D • p (x )=  f D(m)~,(m) exp(-2zdm.x)  dVm, 

where ]~(m) is a polynomial of the scalar products, 
m. v~, m. v z, m. v 3, ..., and hence a polynomial of the 
coefficients, rnt, rn 2, m 3, of m. Conversely, any poly- 
nomial of ml, m2, m3 represents a differential operator 
D. 

The differential operator D applied to ~, may be 
regarded as the limit of the convolutions of a certain 
sequence of proper functions with ~. We write there- 
fore D ,  ~, rather than D~, and think of D(m) as the 
Fourier transform of D(x). The Fourier transform of 
D ,  ~, is then given by 

, 7 ( D  • ~)(h)---- ~ t ( h ) .  

The convolution of the wave am with any function C 
is equal to the product of the Fourier transform of C 
and am: 

C ,  am = C(m)am. (lOa) 
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For the particles ~jk there exists a similar equation: as 
any function D .  ~, cannot be more extensive than ~,, 
there are functions D' such that jk 

D ,  f l j .  7:ik-- D)k(flj .  rjk), j =  1,2 . . . .  ,p, (10b) 

k = 1, 2 , . . . ,  q(j). 

Equation (10b) holds for any D, proper function or 
operator, with 

support(D, f l j .  rjk) ~ support(flj ,  rjk) j = 1, 2 , . . . ,  p, 

k = 1, 2 . . . . .  q(j). 

and similarly 

~IC 2 ,amtTm~m=ZIC2,flj, rjk*l~j k. (16) 
m jk 

We multiply (15) with X, take the complex conjugate of 
(16), convolute the right and left hand sides and find 
with the integral orthogonality (1 la) the equation: 

C l * IC 2 * a m O'mlam[ O" m V 
m 

Therefore, special classes of atoms flj . rjk may also 
allow proper functions D to be inserted into (10b). For 
this reason one can use (10b) to give a more general 
definition of the D's for certain crystals. 

We deduce from (B4a) 

(CI * am am ~mX) * (IC 2 * anon Cn) 

= Jm, n C1 * IC2 *amamlamlOm V ( l l a )  

and from (B4b) 

(D, * fli* rye* r/yk). (D2 • B,, • r , , . .  r/,.~) 

= Jjk..~[(D ~ • f l j .  rjk). (D2 * flj * rjk)] * r/jk, (1 1 b) 

where C~, C2 are arbitrary and D~, D 2 are defined by 
(10b). 

Let now y be any scalar function with one or more 
arguments, then 

• r ( ~ ) = ~ ( D ~ , v / , O 2 , ~ , , . . . ) - y ( 0 , 0  . . . .  ) (12)  

describes a mapping of density functions ~,, which has 
the property 

= ~ [ z (C l* f l j *Z jk*~ jk ) ]* IC2* f lu*  zuv*~uv, 
jkuv 

(17) 

which does not contain the unknown phases. If C~ and 
C 2 are chosen to be Dirac's fi function, (17) is nothing 
but the Patterson function (Patterson, 1934). 

The Fourier transform of (17) gives the intensity 
equations used for least-squares refinement of the atom 
coordinates and the temperature and scale factors in 
the final stages of a crystal-structure analysis. 

We notice that the phases have been eliminated with 
the help of the integral orthogonality. In the next 
chapter it will be shown that the atomic coordinates 
can be eliminated with the help of the local orthogon- 
alities. 

Separation of the phases, the temperature and scale 
factors 

Eliminating p from (B3), we find 

r(v,.~)=r(~,),~, i f r / (x)=f i (x- -x , )  (13) 

for arbitrary D1, D 2 . . . .  and any vector x~. 
If D 1, D2, ... are defined by (10b), one finds, because 

of the non-interpenetration relation (1 l b) and because 
of (13), 

F( Zjk ~j*'£jk* l~jk)= Zjk F(flJ* TYJk)* l~Jk" (14) 

Separation of the coordinates of the atoms, the 
temperature and scale factors 

We take the convolution of (B3a) and (B3b) with C1, 
eliminate p and get 

Z C1, amO'm~m- Z C I ,  ~j,  rjk, t~j k (15) 
m jk 

Y a m a m ( m = ~ . f l j , r j k , r i j k ,  (18) 
m jk 

applying the mapping F on both sides of (18), we de- 
duce with the help of (14), which is a consequence of 
the local orthogonality (B4b): 

F(~m am O'm ~m) =ZF(~j*Tjk)*~jk'jk (19) 

Because of (2) and (9) the identities 

0 m = (,~tqtm)* 

and 

~j* Tjk: [X(~j * Tjk)] * 
are valid. Inserting the two expressions into (19) we get 
by application of (13) 

F(XZmamO'm~m)*~= jkZ F[x(~J*rJk)]* l~Jk*~" 
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The Fourier transform of this equation is 

/~(Z ~am . a m  ~m).~=~,jk f'[Z(flj* rjk)].r/j,.~, (20) 

the Fourier transform of (8) becomes 

~ ( h ) = l / V  Y b ( h - m  l a ~ - m  za  i - m  3a~), 
m 1, m2 ,  m 3 

P where ml, m2, ms run over all integers and a' 1, a2, a~ are 
the reciprocal basis vectors 

aj.a~,=~j.t , ,  j , k = 1 , 2 , 3 ,  

and that of rlj, (Bib)  is 

;/jk(h) = exp (2nih. Xjk). (21) 

By integration of (20) over the neighbourhood of the 
reciprocal-lattice point h' one derives 

f'(X ~m am Om~m)(h') = ~'f[X(flJ * 

(22) 

We now choose n arbitrary local mappings F,,,/~ = 
1, 2, ... n, and^introduce the n × [q(1) + q(2) + ... + 
q(p)] matrix 13, which contains in the #th row the 
elements F,,[Z(flj, zjg)](h') in the lexicographic order 
of j and k; this means the element/~,,[Z(flj * rj,)] in the 
[q(1) + q(2) +^. . .  + q(j - 1) + k]th column. The rank 
of the matrix 13 is less than or equal to the number of 
atoms, q(1) + q(2) + . . .  + q(p), in the elementary cell, 
because this is equal to the number of columns of 13. 
For the purpose of crystal-structure analysis it will be 
sufficient to assume in most cases that the temperature 
factors of the atoms of one kind are all the same, so 
that the rank r of I~ does not exceed p. Special cases 
with r less than p have been described (Rothbauer, 
1975, 1977). 

Let us now build up a matrix 13 by successively 
adding new rows, representing generalized local map- 
pings/ 'u,  until the number of rows n is equal to r + 1. 
Then numbers b~, b E . . . .  , bn will exist such that 

i p 
0 =  bj(~)j, ,  k =  1,2 . . . .  , ~ q(v), (23a) 

j = l  v = l  

and therefore because of (22) 

0 =  ~ b i Z amam~m (h'). (23b) 
j=l 

In (23) the coordinates Xjk of the atoms, contained in 
the shift functions qjk, are eliminated. As n is chosen to 
be equal to r + 1, the numbers b~, b 2 . . . .  , bn_l, are 
uniquely determined by (23a), if we require b,, = 1. 

The elimination procedure was introduced by Sayre 
(1952) and more generally by Woolfson (1958a, b), 

using the mappings F~ (p) = pU,/~ = 1, 2 . . . .  ; for p = ,1 
and FI(P) = P, Fz(P) = p2, (23) represents Sayres  
equation, for p = r = n - 1 and F~(p) = p", 
g = 1, 2, . . . ,  n, (21) becomes Woolfson's equation and 
F~(p) = (DI~ , , p)(D2, , , p) generates the convolutional 
structure factor equations (Rothbauer, 1975, 1976, 
1977). 

We may also write (23) in the form of a determinant. 
Let us choose r linear independent columns out of I] 
and add the column/~u (g Y a m am ~m), ~ = 1, 2 , . . . ,  n, to 
get an n x n matrix B. This matrix is singular because 
of (22) and the structure factor equations appear in the 
simple form 

IBI = 0 .  (24) 

Separation of the scale and temperature factors 

Scale and temperature factors can be separated out of 
the 'normal problem' by inserting the local mapping 

&(p) = (D•, ,  p)(Du2 ,p )  (25) 

into (22), which is a consequence of (B4b), at 
reciprocal-lattice point h' = 0. The left hand side of (22) 
then becomes 

Z fx(Du, *amam~,,,)(Du2*r'.a.&) dV 
m ,  Ill 

: Z [x(Du,*amO'm~m) ] *(ID,n . a .  an~D(O). 
m ,  II  

The phases q~m, contained in the shift functions era, dis- 
appear, if we apply (1 la) to the above expression. We 
derive 

Dul * IDu2 * amamlamlam V(O). 
m 

Since because of (21) 

;Tj , (0)  = 1, 

we find for the right hand side of (22), if F~, is given by 
(25), at the origin of the reciprocal lattice 

~, f z(D~,l , flj , rjk)(Du2, flj , r2, ) dV 
jk 

jk 

an expression which does not depend on the coordi- 
ates of the atoms. Hence the following system of 
equations, 

D,I  • I(D~, 2 . amam)lamlam V(O) 
m 

= ~ ,~. (f),,~ flj ~'j,) • [I(D,n/~j ;'j,)](0), (26) 
jk 
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labelled by the D~, 1, Du2, fl = 1, 2, ..., may be used for 
the determination of the scale and temperature factors 
(Rothbauer, 1978). We note that for the derivation of 
(26) both the local and integral orthogonalities have 
been used. 

Conclusions 

A mathematical formulation, (A) or (B), of the problem 
of crystal-structure analysis has been given on the basis 
of simple accessible experimental information. 

It has been shown that the Patterson function is 
derived if one eliminates the phases of the structure 
factors from the equations of the 'normal problem', and 
that Sayre's, Woolfson's and the convolutional struc- 
ture factor equations are the result if one eliminates the 
coordinates of the atoms. In addition, a method has 
been given to eliminate both the phases of the structure 
factors and the coordinates of the atoms. 

The importance of the orthogonality relations for the 
elimination processes has been stressed and it has 
become intelligible why the Patterson function is 
described by a convolution in direct space and the 
simplest structure factor equations are convolutions in 
reciprocal space. 

If X:k, Bjk, qgm, S, represents a solution of (A) or (B), 
Xjk -- U, B~k, tPm -- u.m, s, for arbitrary u, is also a 
solution describing the same structure, with the origin 
shifted by u. There may also occur non-trivial 
ambiguities of the solution. From the theory of homo- 
metric sets (Pauling & Shappell, 1930) - see for 
example Hosemann & Bagchi (1954) and Bullough 
(1961, 1964) - it becomes obvious that under certain 
conditions several non-congruent structures may 
satisfy the same system of determinantal equations (A) 
or (B). 

In practice, 'solution of the normal problem' means 
solution in the range of natural errors. Beside the usual 
errors, resulting from measurement and the application 
of approximate physical models, we are here concerned 
with termination effects, (A 3) or (B3a), because only a 
finite number of integral intensities of Bragg reflexions 
can be collected. As far as we have described the 
problem in this paper, we did not need to discuss the 
influence of all the approximations and errors, which 
characterize the real situation. However, any method of 
crystal-structure analysis must somehow take into 
account that an exact solution cannot exist. 

The 'normal problem' formulated in (A) or (B) is 
overdetermined in the sense that many more intensities 
are known than atomic coordinates and that tem- 
perature and scale factors are to be calculated. It is 
underdetermined in the sense that there might exist 
multiple, e.g. homometric, solutions. 

No method is known up to now by which the 
solutions of (A) or (B) can be found in any case; and 
we have not even a criterion to prove that a structure, 
which has been found to satisfy (A) or (B), is the only 

one with this property or not. The latter seems to 
embarrass the theoreticians more than the practical 
structure analyst. 

Equation (17) forms the basis of the Patterson 
methods of structure analysis and (23) is used in the 
form of Sayre's equation for phase extension (Sayre, 
1972, 1974). Scale and temperature factors may be 
derived with the help of (26). 

The powerful computing methods of crystal- 
structure analysis now in common use have been 
developed by the introduction of additional statistical 
assumptions, not contained in the propositions of the 
'normal problem'. Further information, not contained 
in the formulation of (A) and (B), but frequently used 
for structure analysis, involves the knowledge of whole 
molecules (Karle, 1976; Main, 1976), also sets of 
diffraction data gained by molecular replacement and 
non-crystallographic symmetries (Crowther, 1969; 
Main, 1967; Rossmann, 1972; Bricogne, 1974). 

The author wishes to thank Professor M. M. 
Woolfson for his help and his interest and Mr M. 
Strange for helpful comments on the manuscript. 
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